
Chapter 5. Conditional
Statements

In This Chapter

In this chapter we will cover the conditional statements in C#, which we

can use to execute different actions depending on a given condition. We will

explain the syntax of the conditional operators if and if-else with suitable

examples and explain the practical application of the operator for selection

switch-case.

We will focus on the best practices to be followed in order to achieve a

better programming style when using nested or other types of conditional

statements.

Comparison Operators and Boolean Expressions

In the following section we will recall the basic comparison operators in the

C# language. They are important, because we use them to describe

conditions in our conditional statements.

Comparison Operators

There are several comparisons operators in C#, which are used to compare

pairs of integers, floating-point numbers, characters, strings and other types:

Operator Action

== Equal to

!= Not equal to

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

Comparison operators can be used to compare expressions such as two

numbers, two numerical expressions, or a number and a variable. The result

of the comparison is a Boolean value (true or false).

Let’s look at an example of using comparisons:

196 Fundamentals of Computer Programming with C#

int weight = 700;
Console.WriteLine(weight >= 500); // True

char gender = 'm';
Console.WriteLine(gender <= 'f'); // False

double colorWaveLength = 1.630;
Console.WriteLine(colorWaveLength > 1.621); // True

int a = 5;
int b = 7;
bool condition = (b > a) && (a + b < a * b);
Console.WriteLine(condition); // True

Console.WriteLine('B' == 'A' + 1); // True

In the sample code we perform a comparison between numbers and between

characters. The numbers are compared by size while characters are compared

by their lexicographical order (the operation uses the Unicode numbers for the

corresponding characters).

As seen in the example, the type char behaves like a number and can be

subtracted, added and compared to numbers freely. However, this should be

used cautiously as it could make the code difficult to read and understand.

By running the example we will produce the following output:

True
False
True
True
True

In C# several types of data that can be compared:

- numbers (int, long, float, double, ushort, decimal, …)

- characters (char)

- Booleans (bool)

- References to objects, also known as object pointers (string, object,

arrays and others)

Every comparison can affect two numbers, two bool values, or two object

references. It is allowed to compare expressions of different types, like

an integer with a floating-point number for example. However, not every pair

of data types can be compared directly. For example, we cannot compare a

string with a number.

Chapter 5. Conditional Statements 197

Comparison of Integers and Characters

When comparing integers and characters, we directly compare their binary

representation in memory i.e. we compare their values. For example, if we

compare two numbers of type int, we will compare the values of their

respective series of 4 bytes. Here is one example for integer and character

comparisons:

Console.WriteLine("char 'a' == 'a'? " + ('a' == 'a')); // True
Console.WriteLine("char 'a' == 'b'? " + ('a' == 'b')); // False
Console.WriteLine("5 != 6? " + (5 != 6)); // True
Console.WriteLine("5.0 == 5L? " + (5.0 == 5L)); // True
Console.WriteLine("true == false? " + (true == false)); // False

The result of the example is as follows:

char 'a' == 'a'? True
char 'a' == 'b'? False
5 != 6? True
5.0 == 5L? True
true == false? False

Comparison of References to Objects

In .NET Framework there are reference data types that do not contain their

value (unlike the value types), but contain the address of the memory in the

heap where their value is located. Strings, arrays and classes are such types.

They behave like a pointer to some value and can have the value null, i.e. no

value. When comparing reference type variables, we compare the

addresses they hold, i.e. we check whether they point to the same location

in the memory, i.e. to the same object.

Two object pointers (references) can refer to the same object or to different

objects, or one of them can point to nowhere (to have null value). In the

following example we create two variables that point to the same value

(object) in the heap.

string str = "beer";
string anotherStr = str;

After executing the source code above, the two variables str and anotherStr

will point to the same object (string with value "beer"), which is located at

some address in the heap (managed heap).

We can check whether the variables point to the same object with the

comparison operator (==). For most reference types this operator does not

compare the content of the objects but rather checks if they point at the same

198 Fundamentals of Computer Programming with C#

location in memory, i.e. if they are one and the same object. The size

comparisons (<, >, <= and >=) are not applicable for object type variables.

The following example illustrates the comparison of references to objects:

string str = "beer";
string anotherStr = str;
string thirdStr = "be" + 'e' + 'r';
Console.WriteLine("str = {0}", str);
Console.WriteLine("anotherStr = {0}", anotherStr);
Console.WriteLine("thirdStr = {0}", thirdStr);
Console.WriteLine(str == anotherStr); // True - same object
Console.WriteLine(str == thirdStr); // True - equal objects
Console.WriteLine((object)str == (object)anotherStr); // True
Console.WriteLine((object)str == (object)thirdStr); // False

If we execute the sample code, we will get the following result:

str = beer
anotherStr = beer
thirdStr = beer
True
True
True
False

Because the strings used in the example (instances of the class

System.String, defined by the keyword string in C#) are of reference type,

their values are set as objects in the heap. The two objects str and thirdStr

have equal values, but are different objects, located at separate addresses in

the memory. The variable anotherStr is also reference type and gets the

address (the reference) of str, i.e. points to the existing object str. So by

the comparison of the variables str and anotherStr, it appears that they are

one and the same object and are equal. The result of the comparison between

str and thirdStr is also equality, because the operator == compares the

strings by value and not by address (a very useful exception to the rule for

comparison by address). However, if we convert the three variables to objects

and then compare them, we will get a comparison of the addresses in the

heap where their values are located and the result will be different.

This above example shows that the operator == has a special behavior

when comparing strings, but for the rest of the reference types (like arrays

or classes) it applies comparison by address.

You will learn more about the class String and the comparison of strings in

the chapter about "Strings".

Chapter 5. Conditional Statements 199

Logical Operators

Let’s recall the logical operators in C#. They are often used to construct

logical (Boolean) expressions. The logical operators are: &&, ||, ! and ^.

Logical Operators && and ||

The logical operators && (logical AND) and || (logical OR) are only used on

Boolean expressions (values of type bool). In order for the result – of

comparing two expressions with the operator && – to be true (true), both

operands must have the value true. For instance:

bool result = (2 < 3) && (3 < 4);

This expression is "true", because both the operands: (2 < 3) and (3 < 4) are

"true". The logical operator && is also called short-circuit, because it does

not lose time in additional unnecessary calculations. It evaluates the left part

of the expression (the first operand) and if the result is false, it does not lose

time for evaluating the second operand – it’s not possible the end result to be

"true" when the first operand is not "true". For this reason it is also called

short-circuit logical operator "and".

Similarly, the operator || returns true if at least one of the two operands has

the value "true". Example:

bool result = (2 < 3) || (1 == 2);

This example is "true", because its first operand is "true". Just like the &&

operator, the calculation is done fast – if the first operand is true, the second

is not calculated at all, as the result is already known. It is also called short-

circuit logical operator "or".

Logical Operators & and |

The operators for comparison & and | are similar to && and ||, respectively.

The difference lies in the fact that both operands are calculated one after the

other, although the final result is known in advance. That’s why these

comparison operators are also known as full-circuit logical operators and

are used very rarely.

For instance, when two operands are compared with & and the first one is

evaluated "false", the calculation of the second operand is still executed. The

result is clearly "false". Likewise, when two operands are compared with | and

the first one is "true", we still evaluate the second operand and the final result

is nevertheless "true".

We must not confuse the Boolean operators & and | with the bitwise

operators & and |. Although they are written in the same way, they take

different arguments (Boolean or integer expressions) and return different

result (bool or integer) and their actions are not identical.

200 Fundamentals of Computer Programming with C#

Logical Operators ^ and !

The ^ operator, also known as exclusive OR (XOR), belongs to the full-

circuit operators, because both operands are calculated one after the other.

The result of applying the operator is true if exactly one of the operands

is true, but not both simultaneously. Otherwise the result is false. Here

is an example:

Console.WriteLine("Exclusive OR: "+ ((2 < 3) ^ (4 > 3)));

The result is as follows:

Exclusive OR: False

The previous expression is evaluated as false, because both operands: (2 <3)

and (4 > 3) are true.

The operator ! returns the reversed value of the Boolean expression to

which it is attached. Example:

bool value = !(7 == 5); // True
Console.WriteLine(value);

The above expression can be read as "the opposite of the truth of the phrase

"7 == 5". The result of this pattern is True (the opposite of False). Note that

when we print the value true it is displayed on the console as "True" (with

capital letter). This "defect" comes from the VB.NET language that also runs

in .NET Framework.

Conditional Statements "if" and "if-else"

After reviewing how to compare expressions, we will continue with conditional

statements, which will allow us to implement programming logic.

Conditional statements if and if-else are conditional control statements.

Because of them the program can behave differently based on a defined

condition checked during the execution of the statement.

Conditional Statement "if"

The main format of the conditional statements if is as follows:

if (Boolean expression)
{
 Body of the conditional statement;
}

It includes: if-clause, Boolean expression and body of the conditional

statement.

Chapter 5. Conditional Statements 201

The Boolean expression can be a Boolean variable or Boolean logical

expression. Boolean expressions cannot be integer (unlike other programming

languages like C and C++).

The body of the statement is the part locked between the curly brackets:

{}. It may consist of one or more operations (statements). When there are

several operations, we have a complex block operator, i.e. series of

commands that follow one after the other, enclosed in curly brackets.

The expression in the brackets which follows the keyword if must return the

Boolean value true or false. If the expression is calculated to the value

true, then the body of a conditional statement is executed. If the result is

false, then the operators in the body will be skipped.

Conditional Statement "if" – Example

Let’s take a look at an example of using a conditional statement if:

static void Main()
{
 Console.WriteLine("Enter two numbers.");
 Console.Write("Enter first number: ");
 int firstNumber = int.Parse(Console.ReadLine());
 Console.Write("Enter second number: ");
 int secondNumber = int.Parse(Console.ReadLine());
 int biggerNumber = firstNumber;
 if (secondNumber > firstNumber)
 {
 biggerNumber = secondNumber;
 }
 Console.WriteLine("The bigger number is: {0}", biggerNumber);
}

If we start the example and enter the numbers 4 and 5 we will get the

following result:

Enter two numbers.
Enter first number: 4
Enter second number: 5
The bigger number is: 5

Conditional Statement "if" and Curly Brackets

If we have only one operator in the body of the if-statement, the curly

brackets denoting the body of the conditional operator may be omitted, as

shown below. However, it is a good practice to use them even if we have only

one operator. This will make the code is more readable.

Here is an example of omitting the curly brackets which leading to confusion:

202 Fundamentals of Computer Programming with C#

int a = 6;
if (a > 5)
 Console.WriteLine("The variable is greater than 5.");
 Console.WriteLine("This code will always execute!");
// Bad practice: misleading code

In this example the code is misleadingly formatted and creates the impression

that both printing statements are part of the body of the if-block. In fact,

this is true only for the first one.

Always put curly brackets { } for the body of “if” blocks even
if they consist of only one operator!

Conditional Statement "if-else"

In C#, as in most of the programming languages there is a conditional

statement with else clause: the if-else statement. Its format is the

following:

if (Boolean expression)
{
 Body of the conditional statement;
}
else
{
 Body of the else statement;
}

The format of the if-else structure consists of the reserved word if,

Boolean expression, body of a conditional statement, reserved word else and

else-body statement. The body of else-structure may consist of one or more

operators, enclosed in curly brackets, same as the body of a conditional

statement.

This statement works as follows: the expression in the brackets (a Boolean

expression) is calculated. The calculation result must be Boolean – true or

false. Depending on the result there are two possible outcomes. If the

Boolean expression is calculated to true, the body of the conditional

statement is executed and the else-statement is omitted and its operators

do not execute. Otherwise, if the Boolean expression is calculated to false,

the else-body is executed, the main body of the conditional statement is

omitted and the operators in it are not executed.

Conditional Statement "if-else" – Example

Let’s take a look at the next example and illustrate how the if-else

statement works:

Chapter 5. Conditional Statements 203

static void Main()
{
 int x = 2;
 if (x > 3)
 {
 Console.WriteLine("x is greater than 3");
 }
 else
 {
 Console.WriteLine("x is not greater than 3");
 }
}

The program code can be interpreted as follows: if x>3, the result at the end

is: "x is greater than 3", otherwise (else) the result is: "x is not greater

than 3". In this case, since x=2, after the calculation of the Boolean

expression the operator of the else structure will be executed. The result of

the example is:

x is not greater than 3

The following scheme illustrates the process flow of this example:

204 Fundamentals of Computer Programming with C#

Nested "if" Statements

Sometimes the programming logic in a program or an application needs to be

represented by multiple if-structures contained in each other. We call them

nested if or nested if-else structures.

We call nesting the placement of an if or if-else structure in the body of

another if or else structure. In such situations every else clause

corresponds to the closest previous if clause. This is how we understand

which else clause relates to which if clause.

It’s not a good practice to exceed three nested levels, i.e. we should not nest

more than three conditional statements into one another. If for some reason

we need to nest more than three structures, we should export a part of the

code in a separate method (see chapter Methods).

Nested "if" Statements – Example

Here is an example of using nested if structures:

int first = 5;
int second = 3;

if (first == second)
{
 Console.WriteLine("These two numbers are equal.");
}
else
{
 if (first > second)
 {
 Console.WriteLine("The first number is greater.");
 }
 else
 {
 Console.WriteLine("The second number is greater.");
 }
}

In the example above we have two numbers and compare them in two steps:

first we compare whether they are equal and if not, we compare again, to

determine which one is the greater. Here is the result of the execution of the

code above:

The first number is greater.

Chapter 5. Conditional Statements 205

Sequences of "if-else-if-else-…"

Sometimes we need to use a sequence of if structures, where the else

clause is a new if structure. If we use nested if structures, the code would

be pushed too far to the right. That’s why in such situations it is allowed to

use a new if right after the else. It’s even considered a good practice. Here

is an example:

char ch = 'X';
if (ch == 'A' || ch == 'a')
{
 Console.WriteLine("Vowel [ei]");
}
else if (ch == 'E' || ch == 'e')
{
 Console.WriteLine("Vowel [i:]");
}
else if (ch == 'I' || ch == 'i')
{
 Console.WriteLine("Vowel [ai]");
}
else if (ch == 'O' || ch == 'o')
{
 Console.WriteLine("Vowel [ou]");
}
else if (ch == 'U' || ch == 'u')
{
 Console.WriteLine("Vowel [ju:]");
}
else
{
 Console.WriteLine("Consonant");
}

The program in the example makes a series of comparisons of a variable to

check if it is one of the vowels from the English alphabet. Every following

comparison is done only in case that the previous comparison was not true. In

the end, if none of the if-conditions is not fulfilled, the last else clause is

executed. Thus, the result of the example is as follows:

Consonant

Conditional "if" Statements – Good Practices

Here are some guidelines, which we recommend for writing if, structures:

206 Fundamentals of Computer Programming with C#

- Use blocks, surrounded by curly brackets {} after if and else in order

to avoid ambiguity

- Always format the code correctly by offsetting it with one tab inwards

after if and else, for readability and avoiding ambiguity.

- Prefer switch-case structure to of a series of if-else-if-else-…

structures or nested if-else statement, if possible. The construct

switch-case we will cover in the next section.

Conditional Statement "switch-case"

In the following section we will cover the conditional statement switch. It is

used for choosing among a list of possibilities.

How Does the "switch-case" Statement Work?

The structure switch-case chooses which part of the programming code to

execute based on the calculated value of a certain expression (most often of

integer type). The format of the structure for choosing an option is as follows:

switch (integer_selector)
{
 case integer_value_1:
 statements;
 break;
 case integer_value_2:
 statements;
 break;
 // …
 default:
 statements;
 break;
}

The selector is an expression returning a resulting value that can be

compared, like a number or string. The switch operator compares the result

of the selector to every value listed in the case labels in the body of the

switch structure. If a match is found in a case label, the corresponding

structure is executed (simple or complex). If no match is found, the default

statement is executed (when such exists). The value of the selector must be

calculated before comparing it to the values inside the switch structure. The

labels should not have repeating values, they must be unique.

As it can be seen from the definition above, every case ends with the

operator break, which ends the body of the switch structure. The C#

compiler requires the word break at the end of each case-section containing

code. If no code is found after a case-statement, the break can be omitted

Chapter 5. Conditional Statements 207

and the execution passes to the next case-statement and continues until it

finds a break operator. After the default structure break is obligatory.

It is not necessary for the default clause to be last, but it’s recommended to

put it at the end, and not in the middle of the switch structure.

Rules for Expressions in Switch

The switch statement is a clear way to implement selection among many

options (namely, a choice among a few alternative ways for executing the

code). It requires a selector, which is calculated to a certain value. The

selector type could be an integer number, char, string or enum. If we want

to use for example an array or a float as a selector, it will not work. For non-

integer data types, we should use a series of if statements.

Using Multiple Labels

Using multiple labels is appropriate, when we want to execute the same

structure in more than one case. Let’s look at the following example:

int number = 6;
switch (number)
{
 case 1:
 case 4:
 case 6:
 case 8:
 case 10:
 Console.WriteLine("The number is not prime!"); break;
 case 2:
 case 3:
 case 5:
 case 7:
 Console.WriteLine("The number is prime!"); break;
 default:
 Console.WriteLine("Unknown number!"); break;
}

In the above example, we implement multiple labels by using case

statements without break after them. In this case, first the integer value of

the selector is calculated – that is 6, and then this value is compared to every

integer value in the case statements. When a match is found, the code block

after it is executed. If no match is found, the default block is executed. The

result of the example above is as follows:

The number is not prime!

208 Fundamentals of Computer Programming with C#

Good Practices When Using "switch-case"

- A good practice when using the switch statement is to put the default

statement at the end, in order to have easier to read code.

- It’s good to place first the cases, which handle the most common

situations. Case statements, which handle situations occurring rarely,

can be placed at the end of the structure.

- If the values in the case labels are integer, it’s recommended that they

be arranged in ascending order.

- If the values in the case labels are of character type, it’s recommended

that the case labels are sorted alphabetically.

- It’s advisable to always use a default block to handle situations that

cannot be processed in the normal operation of the program. If in the

normal operation of the program the default block should not be

reachable, you could put in it a code reporting an error.

Exercises

1. Write an if-statement that takes two integer variables and exchanges

their values if the first one is greater than the second one.

2. Write a program that shows the sign (+ or -) of the product of three real

numbers, without calculating it. Use a sequence of if operators.

3. Write a program that finds the biggest of three integers, using nested

if statements.

4. Sort 3 real numbers in descending order. Use nested if statements.

5. Write a program that asks for a digit (0-9), and depending on the input,

shows the digit as a word (in English). Use a switch statement.

6. Write a program that gets the coefficients a, b and c of a quadratic

equation: ax2 + bx + c, calculates and prints its real roots (if they exist).

Quadratic equations may have 0, 1 or 2 real roots.

7. Write a program that finds the greatest of given 5 numbers.

8. Write a program that, depending on the user’s choice, inputs int, double

or string variable. If the variable is int or double, the program

increases it by 1. If the variable is a string, the program appends "*" at

the end. Print the result at the console. Use switch statement.

9. We are given 5 integer numbers. Write a program that finds those

subsets whose sum is 0. Examples:

- If we are given the numbers {3, -2, 1, 1, 8}, the sum of -2, 1 and 1

is 0.

- If we are given the numbers {3, 1, -7, 35, 22}, there are no subsets

with sum 0.

Chapter 5. Conditional Statements 209

10. Write a program that applies bonus points to given scores in the range

[м…9] by the following rules:

- If the score is between 1 and 3, the program multiplies it by 10.

- If the score is between 4 and 6, the program multiplies it by 100.

- If the score is between 7 and 9, the program multiplies it by 1000.

- If the score is 0 or more than 9, the program prints an error

message.

11. * Write a program that converts a number in the range [0…999] to

words, corresponding to the English pronunciation. Examples:

- 0 --> "Zero"

- 12 --> "Twelve"

- 98 --> "Ninety eight"

- 273 --> "Two hundred seventy three"

- 400 --> "Four hundred"

- 501 --> "Five hundred and one"

- 711 --> "Seven hundred and eleven"

Solutions and Guidelines

1. Look at the section about if-statements.

2. A multiple of non-zero numbers has a positive product, if the negative

multiples are even number. If the count of the negative numbers is

odd, the product is negative. If at least one of the numbers is zero, the

product is also zero. Use a counter negativeNumbersCount to keep the

number of negative numbers. Check each number whether it is

negative and change the counter accordingly. If some of the numbers is

л, print “0” as result (the zero has no sign). Otherwise print “+” or “-”
depending on the condition (negativeNumbersCount % 2 == 0).

3. Use nested if-statements, first checking the first two numbers then

checking the bigger of them with the third.

4. First find the smallest of the three numbers, and then swap it with

the first one. Then check if the second is greater than the third number

and if yes, swap them too.

Another approach is to check all possible orders of the numbers with a

series of if-else checks: a≤b≤c, a≤c≤b, b≤a≤c, b≤c≤a, c≤a≤b and c≤b≤a.

A more complicated and more general solution of this problem is to put

the numbers in an array and use the Array.Sortſ…ƀ method. You may

read about arrays in the chapter “Arrays”.

5. Just use a switch statement to check for all possible digits.

6. From math it is known, that a quadratic equation may have one or two

real roots or no real roots at all. In order to calculate the real roots of a

210 Fundamentals of Computer Programming with C#

given quadratic equation, we first calculate the discriminant (D) by the

formula: D = b
2
 - 4ac. If the discriminant is zero, then the quadratic

equation has one double real root and it is calculated by the formula:

1,2 2

b
x

a

 . If the value of the discriminant is positive, then the equation

has two distinct real roots, which are calculated by the formula:

2

1,2

4

2

b b ac
x

a

 . If the discriminant is negative, the quadratic

equation has no real roots.

7. Use nested if statements. You could use the loop structure for, which

you could read about in the “Loops” chapter of the book or in Internet.

8. First input a variable, which indicates what type will be the input, i.e.

by entering 0 the type is int, by 1 is double and by 2 is string.

9. Use nested if statements or series of 31 comparisons, in order to

check all the sums of the 31 subsets of the given numbers (without the

empty one). Note that the problem in general (with N numbers) is

complex and using loops will not be enough to solve it.

10. Use switch statement or a sequence of if-else constructs and at the

end print at the console the calculated points.

11. Use nested switch statements. Pay special attention to the numbers

from 0 to 19 and those that end with 0. There are many special cases!

You might benefit from using methods to reuse the code you write,

because printing a single digit is part of printing a 2-digit number which is

part of printing 3-digit number. You may read about methods in the

chapter “Methods”.

